Collective Atom–Light Interactions in Dense Atomic Vapours

ebook Springer Theses

By James Keaveney

cover image of Collective Atom–Light Interactions in Dense Atomic Vapours

Sign up to save your library

With an OverDrive account, you can save your favorite libraries for at-a-glance information about availability. Find out more about OverDrive accounts.

   Not today
Libby_app_icon.svg

Find this title in Libby, the library reading app by OverDrive.

app-store-button-en.svg play-store-badge-en.svg
LibbyDevices.png

Search for a digital library with this title

Title found at these libraries:

Loading...
The propagation of light in 'dense media' where dipole-dipole interactions play a role is a fundamental topic that was first studied in the work of Clausius, Mossotti, Lorenz and Lorentz in the latter half of the nineteenth century. However, until recently there remained some areas of controversy: for example, whereas the Lorentz model for a gas predicts a resonance shift, a discrete dipole model does not. This thesis makes the first combined measurement of both the Lorentz shift and the associated collective Lamb shift. This clear experimental result stimulated new theoretical work that has significantly advanced our understanding of light propagation in interacting media.
Collective Atom–Light Interactions in Dense Atomic Vapours